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The governing equations for a moving hydrodynamic surface lead to a local conservation 
law for a surface velocity variable qS not in common use. When the surface is closed and 
applied forces are conservative, the law reduces to Kelvin’s circulation theorem. When the 
flow is irrotational, it reduces to Bernoulli’s law. Incorporation of the conservation law into a 
numerical water wave model cast in an Eulerian representation can result in (1) reduction of 
the prognostic equations from two spatial dimensions to one, and (2) realization of formal 
accuracy to all orders in nonlinearity. In the companion paper [ 11, the shallow water 
diagnostic equation (Poisson’s equation) is also reduced to a one-dimensional problem. The 
prognostic equation derived here thus allows a purely one-dimensional treatment of 
traditionally two-dimensional shallow water waves. This yields significant resolution and 
execution speed benefits for the numerical integration of the overall system. Techniques also 
exist that reduce the deep water diagnostic equation to one dimension. Thus the new 
prognostic equation should be useful in modeling two-dimensiona! deep water waves as a one- 
dimensional problem. ‘rl 1983 Academic Press. Inc. 

1. INTR~OUCTI~N 

This brief report derives a result used by one of the authors (J.M.W.) in 
construction of a unified model of shallow water waves [I]. In an earlier 
investigation, one of the authors (B.E.M.) came across an unfamiliar “conservation- 
of-velocity” law related to Kelvin’s circulation theorem. Together [2] we recognized 
the result as the exact counterpart of an approximate expression used by Witting [3] 
to derive reflection coefficients for long linear waves. For irrotational flows, the 
conservation of velocity law is a variant of Bernoulli’s law, but the general form 
holds for rotational flows as well. 

In the next section we derive the conservation law, demonstrate its connection with 
the circulation theorem and with Bernoulli’s law, and point out its utility in three 
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equation wave models. Such models have as dependent variables u,, us, and h, 
denoting, respectively, horizontal and vertical surface velocity components and wave 
height. The governing equations consist of two prognostic equations for time advan- 
cement of h and a surface velocity variable qs to be defined in (9) below. The system 
is closed by a diagnostic relation derived from Poisson’s equation taking into account 
appropriate boundary conditions. The form of the diagnostic relation may be 
application dependent (e.g., deep versus shallow water waves) and will not be 
considered in detail here. In the companion paper [ 11, the author uses a power series 
technique to relate surface and bottom velocity potentials for shallow water waves. 
For deep water waves, the diagnostic relation can involve a singular integral equation 
[4\ or a mapping which renders the surface flat 151. 

2. SURFACE EQUATIONS 

A. Derivation of the Conservation-of-Veloci@ Law 

We choose a coordinate system with x horizontal, y vertically upward, and h(.u, t) 
the elevation of the surface (or: more generally, an arbitrary continuous surface of 
markers moving with the fluid). The equations governing the fluid and surface are 

(2) 

(3) 

where subscript s denotes evaluation at the surface, p is the fluid density, p the 
pressure, g .the acceleration of gravity, and (F,, F,,) are horizontal and vertical 
components of remaining forces (e.g., viscosity, turbulent Reynolds stress, or external 
body forces). 

The following relations are of assistance in dealing with surface quantities. Let 
Q(x, J’, t) denote a variable of interest (specifically, u or ~1). Then 

Q&i t> = (2(x, h(.x, f), t), (4) 

so that 

aQs i?Q ah aQ - 
%t at+tau s ) 

= (9 
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where the second equality follows from (1). Also, 

where 

It is of interest to note in (5) that the time derivative at fixed x moving vertically with 
the surface is not the material derivative D/Dt in (2) and (3) with the horizontal 
advection dropped. One finds, however, from (5) and (6) that 

which is the material derivative at the surface. We now define a variable 

which may be recognized as the x derivative of the line integral j v . dl taken along 
the surface. (This line integral when taken over the extent of a solitary wave has been 
referred to as the circulation of the wave [6].) Taking the time derivative of (9) and 
substituting (Du/Dt), - u,(~u,/L?x) for 2u,/at and likewise for yS leads, with (l)-(3), 
to the following: 

This result does not require the flow to be irrotational. If the fluid is barotropic 
(p =p(p)) then one replaces p,/p in (10) with (j‘ dp/p),. Equation (10) is the result 
we refer to as the ‘“conservation-of-velocity law,” since in case F, = Fp = 0 it leads to 
constancy of 1 qs dx for flows which are periodic or quiescent at infinity. 

Equation (10) has the attractive property that for F = 0 it allows prediction of qS 
from quantities known only at the surface. The same holds for prediction of h from 
Eq. (I). Thus for the three quantities us, LJ~, h we have two prognostic equations 
involving differentiation only along the surface. This is a significant result for 
modeling purposes, since it reduces the prognostic equations from two dimensions to 
one. A similar equation structure has been exploited successfully using Bernoulli’s 
law for the case of irrotational flow to simulate large-amplitude deep water waves 
[4]. One would expect, therefore, that Eq. (10) would be of value in the simulation of 
forced waves or in situations where an alternative to the Bernoulli formulation may 
be desirable. 
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B. Relation to the Circulation Theorem 

E.quation (10) becomes recognizable as a variant of Kelvin’s circulation theorem 
cast in an Eulerian representation upon consideration of the following. Let a and b be 
abscissae of two points on the surface and moving with the fluid. Then 

On the surface, dy = h’ dx, so that (9~( 11) give 

D .b 
-j u,d-~+v,d~~=!~~(F,dx+F,dy) 
Dt a 

(11) 

For conservative forcing, this becomes a familiar result of Lamb [7]. If the surface 
closes upon itself, then a and b are the same point and conservative forcing leads to 
constancy of the circulation in a moving circuit. Thus the circulation theorem is 
recovered. 

C. Relation to Berrtoulli’s law 

For irrotational flows, Bernoulli’s law is 

a4 -=-~(U2+U2)-$-~~+f(t), at 

where 4(x, y, t) is the velocity potential and f an arbitrary function of time. We note 
from (6) and (9) that 

The assumption of irrotational flow requires the forcing term in (10) to be the 
gradient of a potential lV(x, y, t). Then an x integral of (10) yields, with (13) and 

(14), 

ah- 1 
at - p (15) 
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Taking the next to last term to the left-hand side and recognizing the result as 
D$,/Dt, then subtracting v . Vv from both sides, we find 

This is a simple generalization of (13) for conservative forcing, so that (10) reduces 
to Bernoulli’s law for irrotational flow. 

3. APPLICATION TO WAVE MODELS 

Assuming the surface forcing and pressure to be known, Eqs. (1) and (10) provide 
two constraints for the three variables h, u,, and v,. The third constraint necessary to 
close the system is a two-dimensional boundary value problem resulting from incom- 
pressibility. Equations (1) and (10) involve only surface values as a function of x and 
t. There is thus strong motivation to reduce the two-dimensional (x, y) boundary 
value problem to one dimension (x). If this can be done, the entire system becomes 
one dimensional in space, yielding substantial advantages in available resolution and 
speed for a numerical model of system. For shallow water waves this can be accom- 
plished through expansion of the velocity potential in powers of h [ 11. For deep water 
waves one can choose between a singular integral equation method [4] or a 
conformal mapping to a flat surface [.5]. We will simply outline the problem and its 
boundary conditions. The mechanics of actually solving the boundary value probiem 
as a one-dimensional system are addressed elsewhere [ 1, 4, 51. 

The following discussion will be aided by definition of unit vectors tangent to and 
normal to the surface: 

‘5 = (1, h’)/(l + /P)ifZ (1-q 

n = (-I?‘? l)/(l + P)‘? (15) \ 

We consider two general cases: the velocity potential formulation for irrotational 
flows and the streamfunction formulation for rotational flows. For irrotational flows 
we have 

and 

(19) 
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Integration of (10) forward in time yields qs, which is related to the tangential 
derivative of 4 by the following combination of (9) and (17): 

qs = (1 + /P)“*(r * V$>,. (22) 

On the other hand, time advancement of h requires knowledge of the normal 
derivative: 

g= (1 + h’2)1yn * V(b),. (23) 

The boundary value problem for this case is then to find @/&r given a$/& (or by 
integration of (14), 4, itself) at the surface. The lower boundary condition for shallow 
water is no normal flow at the bottom (zero normal derivative of $), and for deep 
water vanishing flow at great depth (4 tending to zero). 

In the case of rotational flow, the complementary problem arises. One has 

a z’=, 
dX 

v21y = -w, 

(25) 

(26) 

where the vorticity w is 

au au 
cu=ax-;iyy (27) 

and must either be carried as a variable of integration or specified by a turbulence 
model. Time advancement of (10) provides values 

qs = (1 + h’2)1+ . VI/Y),, (28) 

while (1) becomes 

ah -= -(l + /p)“2(T . VI//), = -2. 
at 

One recognizes the second equality in (29) as Stoker’s statement of mass conser- 
vation [8]. Thus in the vorticity-streamfunction formulation, knowledge of surface 
values allows prediction of @/an. The boundary value problem is thus to find a~/&, 
given %~/&z at the surface. The lower boundary conditions are physically the same as 
in the irrotational case. Without loss of generality, they can be stated as I,U = 0 for 
shallow water and w + 0 for deep water. 
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SUMMARY 

The governing equations for a fluid surface lead to a conservation law (IO) for a 
surface velocity variable qs = u, + h’u,. This “conservation-of-velocity” law is an 
extension of Kelvin’s theorem to a fixed Eulerian frame of reference, and recovers 
Bernoulli’s law for irrotational flow. The result (10) may be incorporated in a 
Boussinesq-type wave model, extending its accuracy to all orders in nonlinearity. 
Such a model has been successfully constructed and applied to irrotational waves in 
shallow water [I]. Deep water waves and rotational flows are also amenable to 
description by such a model with the addition of an appropriate solver for Poisson’s 
equation and vorticity equations, respectively. The importance of the results derived 
here is that when the surface forcing F is specified. existing techniques for solving 
Poisson’s equation in shallow water [l] or deep water [4, 5 ] allow the entire system 
to be solved in one spatial dimension. 
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